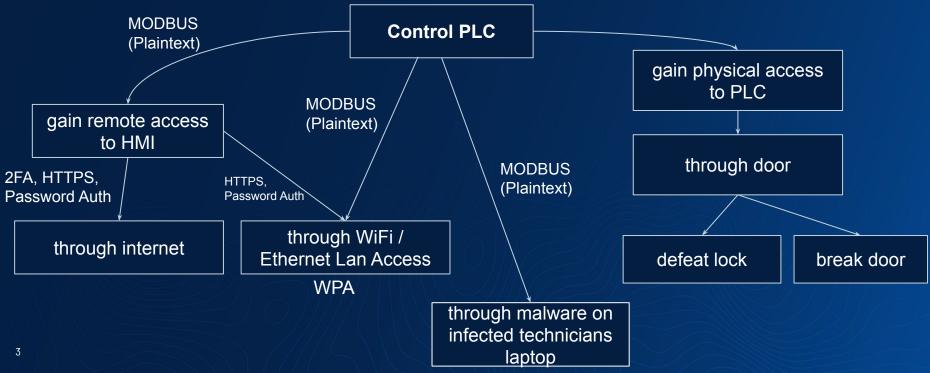


Industrial Control Systems Evaluating Cryptographic Implementations

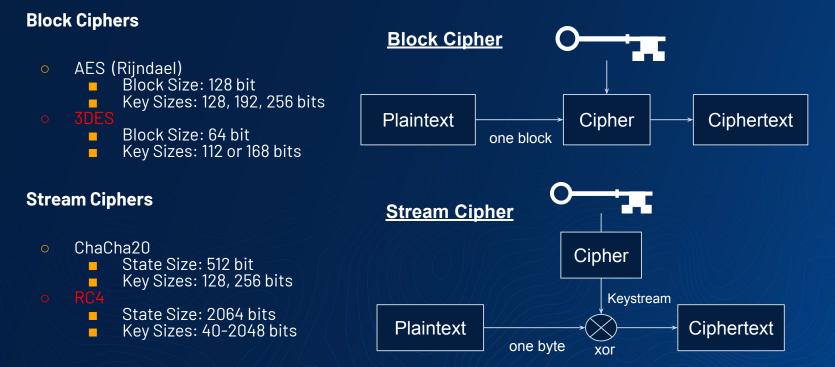
Nick Miles nmiles@tenable.com


"A security system is only as strong as its weakest link."

Cryptography Engineering

- A01:2021-Broken Access Control moves up from the fifth position; 94% of applications were tested for some form of broken access control. The 34 Common Weakness Enumerations (CWEs) mapped to Broken Access Control had more occurrences in applications than any other category.
- A02:2021-Cryptographic Failures shifts up one position to #2, previously known as Sensitive Data Exposure, which was broad symptom rather than a root cause. The renewed focus here is on failures related to cryptography which often leads to sensitive data exposure or system compromise.

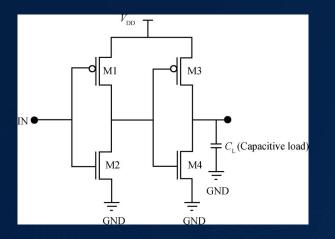
Example Attack Tree


Agenda

- Cryptography Basics
 - Block / Stream Ciphers
 - Hashing Algorithms
 - Digital Šignatures / PKI
 - Key Exchange
 - TLS
- Case Studies
- Best Practices and Conclusions
 - Passwords and Keys
 - Secure Storage
 - 2FA

4

Ciphers

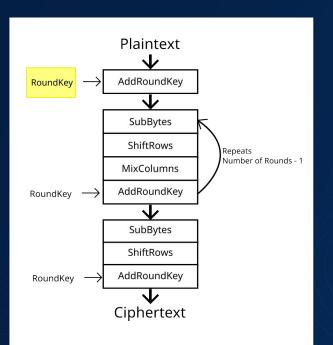

Side Channel Attacks

ChipWhisperer - https://www.newae.com/

Power Analysis Attacks

CMOS Data Bus Circuit

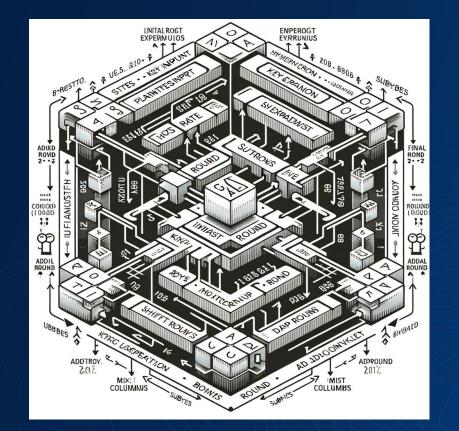
Driving data buses takes power.


Hamming Weight Swings

11111111 -> 00000000 11111110 -> 11111111

Larger Hamming Distance = more power required

AES Block Diagram



							AE	S S-	box							
	00	01	02	03	04	05	06	07	08	09	0a	0b	0c	0d	0e	0f
00	63	7c	77	7b	f2	6b	6f	c5	30	01	67	2b	fe	d7	ab	76
10	ca	82	c9	7d	fa	59	47	fO	ad	d4	a2	af	9c	a4	72	c0
20	b7	fd	93	26	36	3f	f7	сс	34	a5	e5	f1	71	d8	31	15
30	04	c7	23	c3	18	96	05	9a	07	12	80	e2	eb	27	b2	75
40	09	83	2c	1a	1b	6e	5a	a0	52	3b	d6	b3	29	e3	2f	84
50	53	d1	00	ed	20	fc	b1	5b	6a	cb	be	39	4a	4c	58	cf
60	d0	ef	aa	fb	43	4d	33	85	45	f9	02	7f	50	3c	9f	a8
70	51	a3	40	8f	92	9d	38	f5	bc	b6	da	21	10	ff	f3	d2
80	cd	0c	13	ec	5f	97	44	17	c4	a7	7e	3d	64	5d	19	73
90	60	81	4f	dc	22	2a	90	88	46	ee	b8	14	de	5e	0b	db
a0	e0	32	3a	0a	49	06	24	5c	c2	d3	ac	62	91	95	e4	79
b0	e7	c8	37	6d	8d	d5	4e	a9	6c	56	f4	ea	65	7a	ae	08
c0	ba	78	25	2e	1c	a6	b4	c6	e8	dd	74	1f	4b	bd	8b	8a
d0	70	3e	b5	66	48	03	f6	0e	61	35	57	b9	86	c1	1d	9e
e0	e1	f8	98	11	69	d9	8e	94	9b	1e	87	e9	се	55	28	df
f0	8c	a1	89	0d	bf	e6	42	68	41	99	2d	Of	b0	54	bb	16
	mos					,			5			,		the r nvert		-

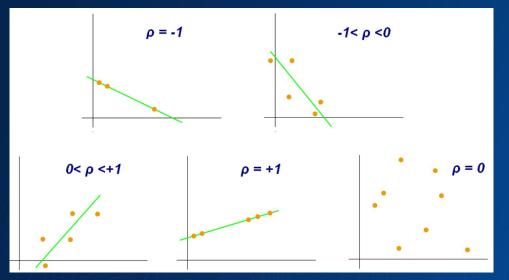
https://en.wikipedia.org/wiki/Rijndael_S-box

Block Diagram AES - GPT 4

9

Correlation Power Analysis Attack

Input Byte	Key Guess	AddRoundKey	SubBytes	Hamming Weight	Power Trace
0xF1	0x00	0xF1	0xA1	3	$\bigvee \longrightarrow$
0x13	0x00	0x13	0x7D	6	
0xE2	0x00	0xE2	0x98	3	
0x83	0x00	0x83	0xEC	5	m



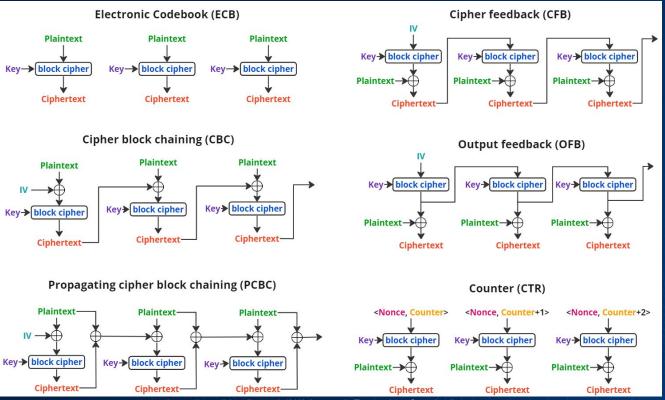
Pearson Correlation Coefficient

Formula

$$r = rac{\sum \left(x_i - ar{x}
ight) \left(y_i - ar{y}
ight)}{\sqrt{\sum \left(x_i - ar{x}
ight)^2 \sum \left(y_i - ar{y}
ight)^2}}$$

- r = correlation coefficient
- x_i = values of the x-variable in a sample
- $ar{x}\,$ = mean of the values of the x-variable
- y_i = values of the y-variable in a sample
- $ar{y}\,$ = mean of the values of the y-variable

https://en.wikipedia.org/wiki/Pearson_correlation_coefficient

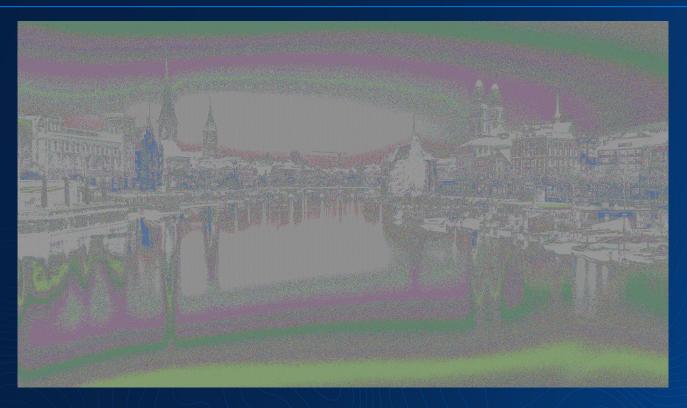


Other AES issues

- Using the correct mode.
- Oracle attacks.

AES Modes

♥ tenable


https://en.wikipedia.org/wiki/Advanced_Encryption_Standard

AES ECB Mode - Plaintext Pixels

AES ECB Mode - Encrypted Pixel Data

AES CBC Mode - Encrypted Pixel Data

Oracle Attacks

- Oracle primitive hotter/colder
- In practice:
 - Error Messages
 - Response Times
 - Response Length
- Types
 - Compression
 - Padding

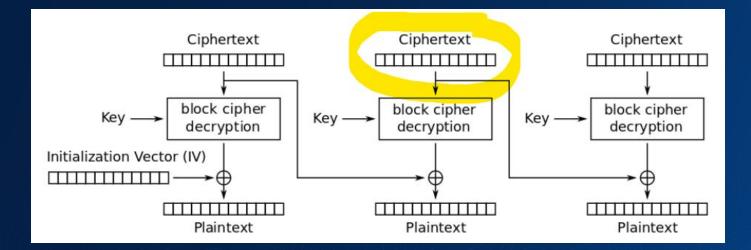
Compression Oracle Attack

- encrypt(compress(unknown_plaintext + attacker_choosen_plaintext))
- Attacker needs to be able to view resulting encrypted traffic or traffic length.
- CRIME SPDY, HTTPS, TLS
- BREACH HTTP compression over HTTPS
- HTTP2 hpack, special compression protocol mitigates these attacks
- Mitigation:
 - Don't use compression or be very selective about what is compressed

Padding Oracle Attack

PKCS#7

0x66	0x6C	0x61	0x67	0x7B	0x50	0x4B	0x43	0x53	0x37	0x5F	0x46	0x54	0x57	0x7D	0x01


0x6	66	0x6C	0x61	0x67	0x7B	0x50	0x4B	0x43	0x53	0x37	0x5F	0x46	0x54	0x57	0x02	0x02
												$Z^{\prime} \rightarrow \pi^{\prime} \gamma^{\prime} \gamma^$				

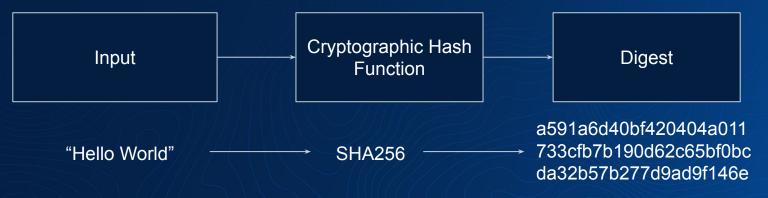
0x66	0x6C	0x61	0x67	0x7B	0x50	0x4B	0x43	0x53	0x37	0x5F	0x46	0x54	0x03	0x03	0x03
		. * .).)						$) \mid \downarrow \downarrow \downarrow \downarrow $	1	1 March					

No padding (add block of zeros)

0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00	0x00
			$\langle X Y Y$		5				111		1			())ten	able

Padding Oracle

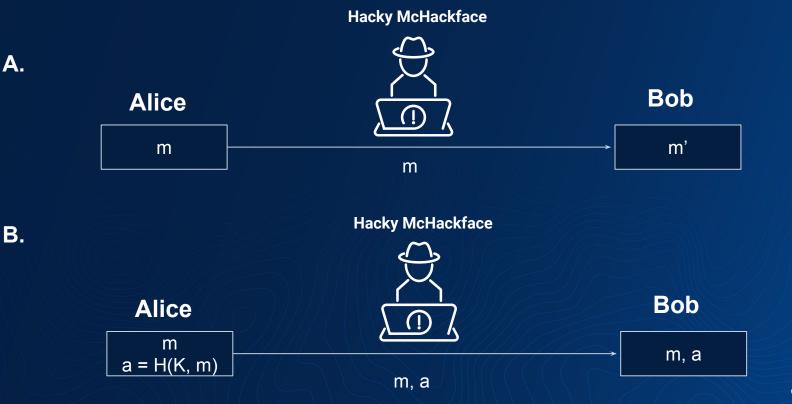
XOR Properties: A ^ B = C C ^ B = A C ^ A = B


Padding Oracle - Prevention

- Don't return an error.
- Validate message using MAC or HMAC before decryption.

Cryptographic Hash Functions

- Hashing Algorithms
 - MD5 (deprecated)
 - SHA1(deprecated
 - SHA 2 (256, 512), truncated 224/384
 - SHA 3



Cryptographic Hash Function Properties

- Pre-image
 - Hash functions are "one-way". If you just have a hash digest, it's difficult to a message that will hash to the same digest.
- Collision resistance
 - You should be difficult to find two messages that hash to the same digest.

Message Authentication Code (MAC)

MAC Attacks

Replay Attacks

Mitigations (in message):

- Nonce (random number, never repeated)
- Timestamps
- Sequence Numbers

Length Extension Attack

$$m = m_1 + m_2 + ... + m_k$$

 $m' = m_1 + ... + m_k + m_{k+1}$

 $h(m') = h'(h(m), h(m_{k+1}))$

note: m' needs to include padding and length field

Length Extension Attack - PoC

Recipe	~ 🖻 🖿 🗊	Input
SHA2	^ () II	<pre>my_secret_key?action=VIEW_PLC_STATUS</pre>
Size 256	Rounds 64	ABC 36 📻 1
		Output 麊
		358d44eefd9d4d6d4e4c2d3cc64d235fe7a1380fa4a8a934ab05a282d6628cbe

Secret: my_secret_key (13 bytes total)

Data: ?action=VIEW_PLC_STATUS

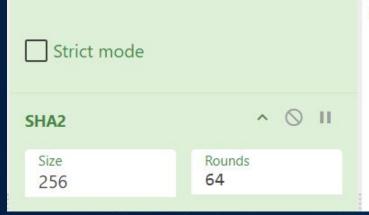
Length Extension Attack PoC Cont'd

import HashTools

```
original_data = b"?action=VIEW_PLC_STATUS"
sig = '358d44eefd9d4d6d4e4c2d3cc6dd235fe7a1380fa4a8a934ab05a282d6628cbe'
append_data = b"&action=STOP_PLC"
magic = HashTools.new("sha256")
new_data, new_sig = magic.extension(
    secret_length=13, original_data=original_data,
    append_data=append_data, signature=sig
```

/

new_data


new_sig

'eda2789c31ab2fc857fbbbbec20b8ff607e287b5d6f50dd22646a9c65c6bf1fe'

	import base64 base64 b64encodo/b"my secret key" + new data)	Ð	\uparrow	\checkmark	+	Ŧ	Î
L	base64.b64encode(b"my_secret_key" + new_data)						_

Length Extension Attack PoC (cont'd)

eda2789c31ab2fc857fbbbbec20b8ff607e287b5d6f50dd22646a9c65c6bf1fe

HMAC

• HMAC - RFC 2104 "Hash it again approach"

• K = key, text = plaintext, H=hash function

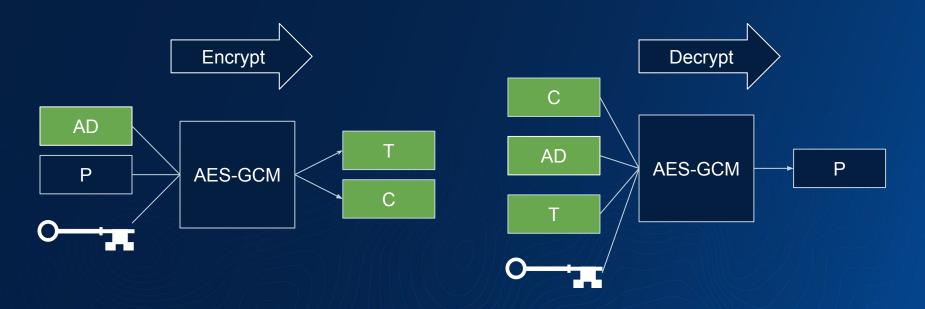
We define two fixed and different strings ipad and opad as follows (the 'i' and 'o' are mnemonics for inner and outer):

ipad = the byte 0x36 repeated B times
opad = the byte 0x5C repeated B times.

To compute HMAC over the data `text' we perform

H(K XOR opad, H(K XOR ipad, text))

This protects against length extension attacks, and key recovery attacks.


CMAC

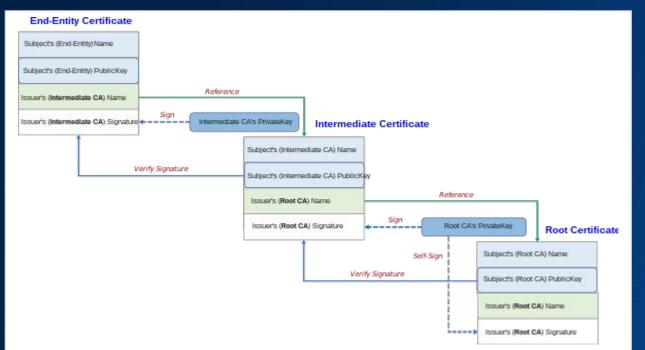
+ +
+ Input : K (128-bit key) +
+ : M (message to be authenticated) +
+ : len (length of the message in octets) +
+ Output : T (message authentication code) +
+ 1 10 49 10 3. 3. 2. 2. 2. 2. 2. 2. 2. 10 10 10 10 10 10 10 10 10 10 10 10 10

+ Constants: const_Zero is 0x0000000000000000000000000000 +
+ const_Bsize is 16 +
+ +
+ Variables: K1, K2 for 128-bit subkeys +
<pre>+ M_i is the i-th block (i=1ceil(len/const_Bsize)) +</pre>
+ M_last is the last block xor-ed with K1 or K2 +
+ n for number of blocks to be processed +
+ r for number of octets of last block +
+ flag for denoting if last block is complete or not +
+ +
+ Step 1. (K1,K2) := Generate_Subkey(K); +
+ Step 2. n := ceil(len/const_Bsize); +
+ Step 3. if n = 0 +
+ then +
+ n := 1; +
+ flag := false; +
+ else +
+ if len mod const_Bsize is 0 +
+ then flag := true; +
+ else flag := false; +
+ +
+ Step 4. if flag is true +
+ then M_last := M_n XOR K1; +
+ else M_last := padding(M_n) XOR K2; +
+ Step 5. X := const Zero; +
+ Step 5. for i := 1 to n-1 do +
+ begin +
+ Y := X XOR M i: +
+ X := AES-128(K,Y); +
+ end +
+ Y := M last XOR X: +
+ T := AES-128(K,Y); +
+ Step 7. return T; +
++++++++++++++++++++++++++++++++++++++

RFC 4493

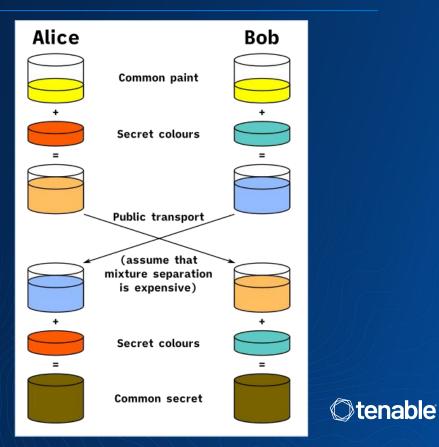
30

AES-GCM


• Authenticated encryption with associated data (AEAD).

Asymmetric Algorithms

• RSA, DSA, ECDSA


• Asymmetric Encryption Algorithms

() tenable

Key Exchange

- DH (Diffie-Hellman)
- DHE or ECDHE
 - Ephemeral
- Perfect Forward Secrecy (PFS / FS)

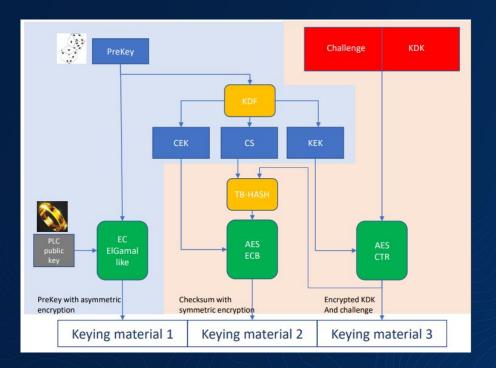
Use TLS!!!!

- TLS 1.3 is latest version. As of April 2024, 1.1 and 1.2 are deprecated.
- If using TLS 1.3, you can be sure that it won't use any of the insecure mechanisms listed on previous slides.
- TLS 1.3 uses a shorter handshake than previous TLS versions, making it faster than previous versions.
- TLS 1.3 only uses ephemeral keys exchanged using Diffie Hellman. You can't add a key to Wireshark to decrypt this traffic, but there are other was to reverse engineer protocols using TLS 1.3.

Case Studies - Reverse Engineering Tools

Tools:

- Wireshark
- Ghidra, IDA Pro
- dnSpy (for .NET applications)
- WinDBG

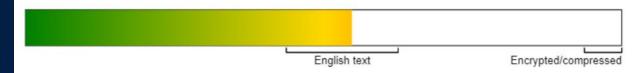

Identifying TLS - s7plus

00000000	03	00 00	23	1e	e0 1	00	00	00	01	00	c0	01	0a	c 1	02	#
00000010	01	00 c2	Øf	53	49	4d	41	54	49	43	2d	52	4f	4f	54	SIMA TIC-ROOT
00000020	2d	45 53														-ES
00000	000	03 0	0 00	23	1e	dØ	00	01	00	9 01	0) c(0 01	L 0a	a c1	02#
00000	010	01 0	0 c2	0f	53	49	4d	41	54	4 49	4	3 20	1 52	2 41	F 4f	54SIMA TIC-ROOT
00000	020	2d 4	5 53	1												-ES
00000023	03	00 00	21	02	f0 1	80										
0000002A	72	01 00	12	31	00	00	05	b3	00	00	00	01	00	00	00	r1
000003A	00	30 00	00	00	00	72	01	00	00							.0r
00000	023	03 0	0 00) 1f	02	fØ	80	72	01	1 00) 1(32	2 00	0 00	0 05	b3r2
00000	033	00 0	0 00	01	70	00	00	00	00	9 00	9 00	77	2 01	00	00 6	pr
00000044	03	00 04	04	02	f0 (00										
0000004B	16	03 01	00	ea	01 (90	00	e6	03	03	53	Ød	cf	7e	41	A
0000005B	af	c3 9c	28	b1	00	9f	15	97	05	ed	0e	99	99	4d	76	(Mv
0000006B	1b	dc ec	c 3	34	39	6d	85	00	4b	f9	20	94	06	8c	88	49mK
0000007B	72	5a 81	cf	f3	5e	7a	8e	fØ	d5	a5	6b	e4	95	35	80	rZ^zk5.
000008B	8a	54 77	25	38	3f I	bc	a5	fe	c7	60	f3	00	26	c0	2b	.Tw%8?&.+
0000009B	c0	2f c0	2c	c0	30	сс	a9	сс	a8	c0	09	c0	13	c0	0a	./.,.0
000000AB	c0	14 00	9c	00	9d (90	2f	00	35	c0	12	00	0a	13	01	/ .5
000000BB	13	02 13	03	01	00	00	77	00	05	00	05	01	00	00	00	W
000000CB	00	00 0a	00	0a	00	80	00	1d	00	17	00	18	00	19	00	

https://blog.viettelcybersecurity.com/security-wall-of-s7commplus-part-1/

Siemens DIY Crypto

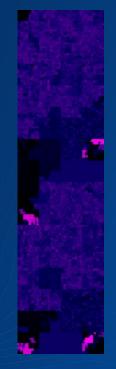
https://blog.viettelcybersecurity.com/security-wall-of-s7commplus-part-1/



Entropy Calculation

$$\mathrm{H}(X):=-\sum_{x\in\mathcal{X}}p(x)\log p(x)$$

the average amount of information contained in message


Shannon entropy: 4.380584051175847

- O represents no randomness (i.e. all the bytes in the data have the same value) whereas 8, the maximum, represents a completely random string.

- Standard English text usually falls somewhere between 3.5 and 5.
- Properly encrypted or compressed data of a reasonable length should have an entropy of over 7.5.

The following results show the entropy of chunks of the input data. Chunks with particularly high entropy could suggest encrypted or compressed sections.

StartTLS

SReqStartTLS	00000023 03 00 00 21 02 f0 80		· !
03 00 00 21 02 f 0 80	0000002A 72 01 00 12 31 00 00 05 b3 00 00 01 00 0	00 00	r1
72 # protocol (S7 plus) 01 # Connection Packet 00 12 # Data Length 24 # Tere (converte)	0000003A 00 30 00 00 00 00 72 01 00 00		.0r
31 # Type (request) 00 00 # Null	<pre>slse if (iVar2 == 0x5b3) {</pre>	Ū.	TLSHandler f continue execution cb
05 b3 # starttls funccode	<pre>puVar5 = (undefined8 *) (**(code **) (*plVar3 + 8)) (plVar3,0x1c8); if (puVar5 == (undefined8 *)0x0) {</pre>	÷	f decrypt
00 00 00 01 # sequence number	uVar4 = 0xa00f26000121fffc;		<pre>f deliver_verification_info f do_handshake</pre>
00 00 00 00 30 00 00 # ?	} else {		<pre>finish_longrunner_cb</pre> f handle_result
00 00 72 01 00 00 # frame boundary	FUN_00151e60 (puVar5);		f postprocess_read f postprocess_write
SReqStartTLS Response	puVar5[0x34] = 0;		f preprocess_read
03 00 00 1f 02 f0 80	puVar5[0x35] = puVar5; *(undefined *)(puVar5 + 0x36) = 1;	÷	f preprocess_write RTTI_Base_Class_Array
72 # S7 Plus 01 # Connection	puVar5[0x37] = 0;		 RTTI_Base_Class_Descriptor_at_(0,-1,0,64) RTTI_Class_Hierarchy_Descriptor RTTI_Complete_Object_Locator
00 10 # Data Length 32 # Type (response)	<pre>*(undefined *)(puVar5 + 0x38) = 0; *puVar5 = OMS::SRegStartTLS::vftable;</pre>		RTTI_Complete_Object_Locator RTTI_Type Descriptor
00 00 # Null	<pre>puVar5[0x33] = OMS::SReqStartTLS::vftable;</pre>		f s_ssl_error f starttls
05 b3 # starttls	puVar5[0x22] = puVar5 + 0x33;		f tls_wakeup
00 00 00 01 # sequence number	*param_3 = $puVar5$; uVar4 = 0;		vftable vftable meta ptr
70 00 00 # ?	3		vftable_meta_ptr

() tenable

TLS Handshake (s7plus opportunistic / starttls TLS example)

TLS Headers

struct {
 ContentType type;
 ProtocolVersion legacy_record_version;
 uint16 length;
 opaque fragment[TLSPlaintext.length];
} TLSPlaintext;

type: The higher-level protocol used to process the enclosed fragment.

legacy_record_version: MUST be set to 0x0303 for all records
generated by a TLS 1.3 implementation other than an initial
ClientHello (i.e., one not generated after a HelloRetryRequest),
where it MAY also be 0x0301 for compatibility purposes. This
field is deprecated and MUST be ignored for all purposes.
Previous versions of TLS would use other values in this field
under some circumstances.

length: The length (in bytes) of the following TLSPlaintext.fragment. The length MUST NOT exceed 2^14 bytes. An endpoint that receives a record that exceeds this length MUST terminate the connection with a "record_overflow" alert.

16 03 01 00 ea

Type: 0x16 Version: 1.3 Length: 0x00ea (234)

41

s7plus TLS - v17 and up

f ssl_x509err2alert					
<pre></pre>					
F ssl_cipher_disabled					
F ssl_security_cert					
<pre></pre>					
<pre></pre>					
<pre></pre>					
🗲 <mark>ssl_</mark> set_sig_mask					
<pre> f ossl_statem_server_construct_message </pre>					
<pre>f ossl_statem_server_max_message_size</pre>					
f ossl_statem_server_write_transition					
<pre>f ssl_ctx_system_config</pre>	s'.rdata		0000001C	С	ZOpenSSL 1.1.1i 8 Dec 2020
🗾 <mark>ssl_</mark> do_config	the second se				
f ssl3_set_handshake_header			00000053	C	d:\\2427\\16217\\sources\\ <mark>openssl</mark> \\openssl_vs2017_release_x64_static\\ssl\\packet_local.h
<u>f</u> ssl3_callback_ctrl	s'.rdata	a:00000	00000019	C	OPENSSL_DIR_read(&ctx, '
🗲 <mark>ssl</mark> 3_clear	s'.rdata	a:00000	00000011	С	OPENSSL_init_ssl
<u>f</u> ssl3_ctx_callback_ctrl	's' .rdata	a:00000	00000013	С	OPENSSL isservice
f ssl3_free	and the second se		00000010	e Me	
🗲 <mark>ssl</mark> 3_get_cipher					
<pre>f ssl3_get_cipher_by_char</pre>					
F ssl3_get_cipher_by_id					

f

f

ssl3_get_cipher_by_std_name ssl3_get_req_cert_type

ssl3_put_cipher_by_char ssl3_read_internal ssl3_renegotiate_check

ssl3_set_req_cert_type ssl3_shutdown

ssl3 new ssl3 peek

f ssl3 write ssl_dh_to_pkey

Reverse Engineering Protocols With TLS 1.3 - s7plus

\$\$ buf is rdx, num is r8d [breakpoints in TLSHandler::decrypt() after SSL_read() call] bu OMSp_core_managed+0x000e11e4 ".echo \"decrypted plaintext buf\"; .frame; db rdx L 512; .echo \"decrypted plaintext num\"; r eax; gc"

\$\$ buf is rdx, num is r8d [in TLSHandler::preprocess_write(), breakpoints around SSL_write() call] bu OMSp_core_managed+0x000dfb55 ".echo \"encrypt plaintext buf\"; .frame; db rdx L 512; gc" bu OMSp_core_managed+0x000dfb5d ".echo \"encrypt plaintext num\"; .frame; r eax; gc"

Reverse Engineering S7Plus

```
undefined8 FUN 005128e0(undefined4 *param 1)
 undefined4 uVar1;
 longlong lVar2;
 int iVar3;
 if (*(longlong *)(param 1 + 2) == 0) {
   ERR put error(0x14,0xa4,0xbc,"ssl\\ssl lib.c",580);
   return 0;
 iVar3 = FUN 0051e120();
 if (iVar3 != 0) {
    FUN 0051d9a0(*(undefined8 *)(param 1 + 0x142));
   * (undefined8 *) (param 1 + 0x142) = 0;
  FUN 0051d9a0(*(undefined8 *)(param 1 + 0x144));
  * (undefined8 *) (param 1 + 0x144) = 0;
 CRYPTO free(*(void **)(param 1 + 0x146), "ssl\\ssl lib.c", 590);
  * (undefined8 *) (param 1 + 0x146) = 0;
  * (undefined8 *) (param 1 + 0x148) = 0;
 param 1[0x136] = 0;
```

```
*(undefined8 *)(param_1 + 0x5d2) = 0;
param 1[0x15c] = 0;
```

param 1[0x32] = 0;

```
575
        int ossl ssl connection reset(SSL *s)
576
577
            SSL CONNECTION *sc = SSL CONNECTION FROM SSL(s);
578
            if (sc == NULL)
579
580
                return 0;
581
            if (ssl clear bad session(sc)) {
582
                SSL SESSION free(sc->session);
583
                sc->session = NULL;
584
585
            }
586
            SSL SESSION free(sc->psksession);
            sc->psksession = NULL;
587
588
            OPENSSL free(sc->psksession id);
            sc->psksession id = NULL;
589
```


WinDBG Output

decrypted plaintext buf

decrypted plaintes																
00 0000002b'15eff9	20	000	07f	Fb '	e12	30f(52	OM	Sp_	core	e_m	anag	ged-	+0x	elle	14
000001cd'00f53458	72	02	00	15	32	00	00	05-86	00	00	00	04	34	00	00	r2
000001cd \00f53468	00	04	a0	00	05	00	00	00-00	72	02	00	00	17	46	06	F.
000001cd`00f53478	bd	7f	b4	24	9b	af	6a	11-02	11	a9	c8	24	b2	31	42	\$j\$.1B
000001cd`00f53488	37	42	30	38	34	37	44	31-31	36	39	34	a3	82	2b	00	7B0847D11694+.
000001cd'00f53498	04	01	a3	82	2d	00	15	1c-4f	4d	53	50	5f	31	32	2e	OMSP_12.
000001cd`00f534a8	30	30	2e	30	31	2e	30	37-5f	33	35	2e	30	37	2e	30	00.01.07_35.07.0
000001cd`00f534b8	30	2e	30	31	a3	82	2f	10-02	14	9f	fc	e1	9b	28	53	0.01/(S

000001cd`00f53958	bO	4f	75	e1	c9	7f	01	80-f0	00	00	00	c9	01	00	00	.0u
000001cd`00f53968	41	4e														AN
decrypted plaintex	t n	um														
eax=1d																
encrypt plaintext	buf															
00 0000002b'15eff8	20	000	07f-	Fb'	e12	914	Bc	OM	Sp_	core	e_m	anag	ged-	+0x	dfb5	5
000001cd'00ef6470	72	02	00	36	31	00	00	04-f2	00	00	00	05	70	00	θc	r61p
000001cd \00ef6480	86	34	70	00	Θc	86	01	8e-6f	00	04	a0	00	00	00	04	.4po
000001cd`00ef6490	e8	89	69	00	12	00	00	00-00	89	6a	00	13	00	89	6b	ijk
000001cd`00ef64a0	00	04	00	00	00	04	00	00-00	00	72	02	00	00	40	82	r
000001cd`00ef64b0	3f	00	15	00	82	40	00	15-1a	31	3b	36	45	53	37	20	?@1;6ES7
000001cd`00ef64c0	35	31	31	2d	31	41	4b	30-32	2d	30	41	42	30	3b	56	511-1AK02-0AB0;V
000001cd`00ef64d0	32	2e	39	82	41	00	03	00-03	00	02	00	04	01	00	00	2.9.A
000001cd`00ef64e0	00	04	e8	89	69	00	12	00-00	00	00	89	6a	00	13	00	jj
000001cd'00ef64f0	89	6b	00	04	00	00	00	00-00	00	72	02	00	00	50	50	.k
000001cd`00ef6500	38	5f	31	31	38	37	31	37-39	33	35	39	a3	82	2b	00	8_1187179359+.
000001cd'00ef6970	00	00	00	00	00	00	00	00-00	00	00	00	00	00	00	00	
000001cd`00ef6980	00	00														
encrypt plaintext	num															
00 0000002b'15eff8	20	000	07f-	Fb'	e12	914	Bc	OM	Sp_	core	e_m	anag	ged-	+0x	dfb5	id
eax=3e																

() tenable

Beware Deprecated Algorithms

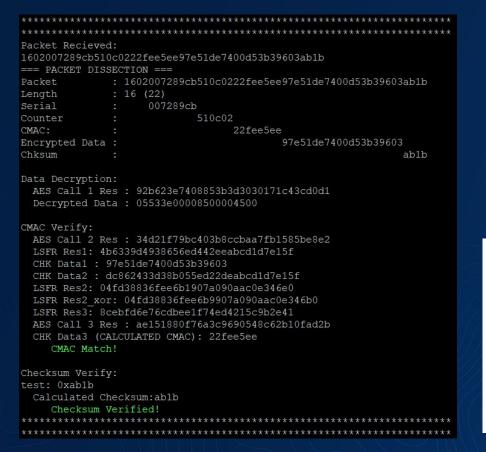
- NIST has deprecated **DES** and **3DES** for all applications.
 - AES is a a good replacement

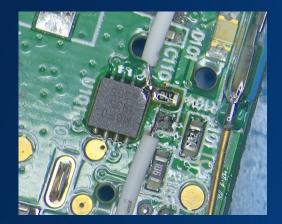
SHA1 and MD5 are deprecated.
Recommend SHA256/512 as replacement.
RSA < 2048 bits.

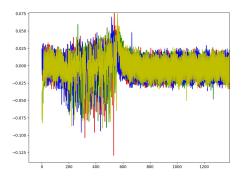
Password Storage (Client Side)

```
public static String RotInput(String paramString) {
  StringBuffer stringBuffer = new StringBuffer(paramString);
  for (byte b = 0; b < stringBuffer.length(); b++)</pre>
    stringBuffer.setCharAt(b, rot13(stringBuffer.charAt(b)));
  return stringBuffer.toString();
  return paramChar;
private void writeUserData(PrintWriter paramPrintWriter) throws IOException {
  paramPrintWriter.println(this.HTTPUsername);
  paramPrintWriter.println(this.HTTPPassword);
private void writePWData(PrintWriter paramPrintWriter) throws IOException {
  paramPrintWriter.print(this.Password);
private void writeConfigData(PrintWriter paramPrintWriter) throws IOException {
  paramPrintWriter.print(RotInput(this.configPassword));
```

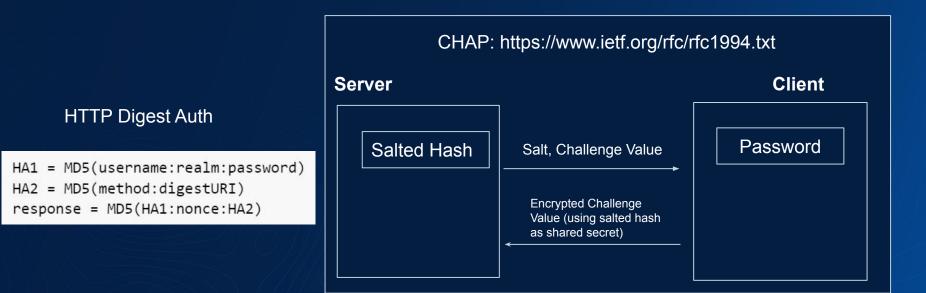

Password Storage (Server Side)


- Don't store passwords, store their salted and hashed digests (using a cryptographically sounds RNG source, and FIPS compliant hash algorithm).
 e.g. rnd_str + '\$' + SHA256(rnd_str+password)
- Better yet, use an algorithm designed for storing passwords that is FIPS compliant.
 - Argon2id
 - scrypt (a version of this called "yescrypt" is used in Ubuntu, see example below)
 - bycrypt


https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html


genius:\$y\$j9T\$.JWhKaIhAm.ZBDPhwYRx2.\$QfczucaFDPcirfeNrNNkuKjcDK3wL68ybv/juqJtwF1:19850:0:99999:7:::

Hardcoded Keys


Improper Password Authentication

```
# Reading memory block from controller
0000042D 45 00 00 00 00 00 00 5a 00 20 01 <redacted> 00 1a 01 00 E.....Z.
. . . . . .
0000043D 00 3d 00
                                                             . = .
    0000059D 45 00 00 00 04 400 5a 00 fe 01 3d 00 42 5a 74 E....D.Z ...=.BZt
    000005AD 66 64 69 41 58 67 52 4d 3d 0d 0a 4e 67 36 59 58 fdiAXgRM = .. Ng6YX
    000005BD 62 77 67 2f 53 68 7a 42 4c 47 5a 38 52 36 6d 71 bwg/ShzB LGZ8R6mg
    000005CD 66 64 6a 75 74 4f 57 6c 45 38 48 6a 49 6a 69 56 fdjutoWl E8HjljiV
    000005DD 44 51 65 2f 4a 49 3d 0d 0a 00
                                                                DOe/JI=. ..
First Base64 Str: BZtfdiAXgRM=
  Decoded: 05 9B 5F 76 20 17 81 13
Second Base64 Str: Ng6YXbwg/ShzBLGZ8R6mgfdjutOWlE8HjIjiVDQe/JI=
Password: sapphire1 (will be encoded using unicode)
  Encoded: 73 00 61 00 70 00 70 00 68 00 69 00 72 00 65 00 31 00
sha256(First Base64 decoded + password encoded) =
sha256(05 9B 5F 76 20 17 81 13 73 00 61 00 70 00 70 00 68 00 69 00 72 00 65 00 31
00)
= 360e985dbc20fd287304b199f11ea6a9f763bad396944f078c88e254341efc92
base64 encode(360e985dbc20fd287304b199f11ea6a9f763bad396944f078c88e254341efc92) =
Ng6YXbwg/ShzBLGZ8R6mgfdjutOWlE8HjIjiVDOe/JI= (matches second base64 str above,
password valid)
```


Authentication Bypass

SHA256 (server_nonce + base64_str + client_nonce)

Conclusion

- Use a popular, well supported cryptographic library in your projects rather than coming up with your own cryptographic functions. If possible, leave it as a shared library.
- For a complete solution for integrity, authentication, and confidentiality, use TLS
 1.3. Use certificates for authentication rather than passwords.
- Don't use deprecated cryptographic routines functions.
- Encoding / obfuscation is not crypto.
- Use HMAC rather than MAC for integrity checking. Implement per RFC or use a library.
- Don't assume hard coded encryption keys in hardware can't be recovered. Even if you blow the security fuses.
- Store passwords properly as salted hashes.
- Look for prior work, and RFCs if you need help with some in particular.
- Have a few experts review your cryptographic implementations.

Password Authentication Best Practices - End Users

- Ideally random user IDs to prevent attackers guessing.
- Use *different* authentication solution for remote access than what is used internally (LDAP, AD, etc...). Ideally something hardened and designed to this purpose.
 - This solution use also utilize 2FA solution.
- Passwords should be at least 8 characters. OWASP recommends using a password "strength" meter rather than complexity requirements which can actually result in more predictable passwords.
 - https://github.com/zxcvbn-ts/zxcvbn

https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html

