
Industrial Control Systems
Evaluating Cryptographic Implementations

Nick Miles
nmiles@tenable.com

mailto:nmiles@tenable.com

“A security system is only as strong
as its weakest link.”
- Cryptography Engineering

Example Attack Tree

3

Control PLC

gain remote access
to HMI

gain physical access
to PLC

through door

defeat lock break door
through WiFi /

Ethernet Lan Accessthrough internet

through malware on
infected technicians

laptop

2FA, HTTPS,
Password Auth

MODBUS
(Plaintext)

WPA

MODBUS
(Plaintext)

MODBUS
(Plaintext)

HTTPS,
Password Auth

Agenda

• Cryptography Basics
• Block / Stream Ciphers
• Hashing Algorithms
• Digital Signatures / PKI
• Key Exchange
• TLS

• Case Studies
• Best Practices and Conclusions
• Passwords and Keys
• Secure Storage
• 2FA

4

Ciphers
Block Ciphers

○ AES (Rijndael)
■ Block Size: 128 bit
■ Key Sizes: 128, 192, 256 bits

○ 3DES
■ Block Size: 64 bit
■ Key Sizes: 112 or 168 bits

Stream Ciphers

○ ChaCha20
■ State Size: 512 bit
■ Key Sizes: 128, 256 bits

○ RC4
■ State Size: 2064 bits
■ Key Sizes: 40-2048 bits

5

Plaintext CiphertextCipher

Cipher

Plaintext

Keystream

xor

one block

one byte
Ciphertext

Block Cipher

Stream Cipher

Side Channel Attacks

6

ChipWhisperer - https://www.newae.com/

Power Analysis Attacks

7

CMOS Data Bus Circuit

Driving data buses takes power.

11111111 -> 00000000

11111110 -> 11111111

Larger Hamming Distance = more power required

Hamming Weight Swings

AES Block Diagram

8
https://en.wikipedia.org/wiki/Rijndael_S-box

9

Block Diagram AES - GPT 4

Correlation Power Analysis Attack

10

Input
Byte

Key
Guess

AddRoundKey SubBytes Hamming
Weight

Power Trace

0xF1 0x00 0xF1 0xA1 3

0x13 0x00 0x13 0x7D 6

0xE2 0x00 0xE2 0x98 3

0x83 0x00 0x83 0xEC 5

Pearson Correlation Coefficient

11

https://en.wikipedia.org/wiki/Pearson_correlation_coefficient

Other AES issues

● Using the correct mode.

● Oracle attacks.

12

AES Modes

13
https://en.wikipedia.org/wiki/Advanced_Encryption_Standard

AES ECB Mode - Plaintext Pixels

14

AES ECB Mode - Encrypted Pixel Data

15

AES CBC Mode - Encrypted Pixel Data

16

Oracle Attacks

● Oracle primitive - hotter/colder
● In practice:

○ Error Messages
○ Response Times
○ Response Length

● Types
○ Compression
○ Padding

17

Compression Oracle Attack

● encrypt(compress(unknown_plaintext + attacker_choosen_plaintext))
● Attacker needs to be able to view resulting encrypted traffic or traffic

length.
● CRIME - SPDY, HTTPS, TLS
● BREACH - HTTP compression over HTTPS
● HTTP2 - hpack, special compression protocol mitigates these attacks
● Mitigation:

○ Don’t use compression or be very selective about what is compressed

18

Padding Oracle Attack

19

0x66 0x6C 0x61 0x67 0x7B 0x50 0x4B 0x43 0x53 0x37 0x5F 0x46 0x54 0x57 0x7D 0x01

0x66 0x6C 0x61 0x67 0x7B 0x50 0x4B 0x43 0x53 0x37 0x5F 0x46 0x54 0x57 0x02 0x02

0x66 0x6C 0x61 0x67 0x7B 0x50 0x4B 0x43 0x53 0x37 0x5F 0x46 0x54 0x03 0x03 0x03

PKCS#7

0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00

No padding (add block of zeros)

Padding Oracle

20

XOR Properties:
A ^ B = C
C ^ B = A
C ^ A = B

Padding Oracle - Prevention

● Don’t return an error.

● Validate message using MAC or HMAC
before decryption.

21

Cryptographic Hash Functions

● Hashing Algorithms
○ MD5 (deprecated)
○ SHA1 (deprecated)
○ SHA 2 (256, 512), truncated 224/384
○ SHA 3

22

Input Cryptographic Hash
Function Digest

“Hello World” SHA256
a591a6d40bf420404a011
733cfb7b190d62c65bf0bc
da32b57b277d9ad9f146e

Cryptographic Hash Function Properties

● Pre-image
○ Hash functions are “one-way”. If you just have a hash

digest, it’s difficult to a message that will hash to the same
digest.

● Collision resistance
○ You should be difficult to find two messages that hash to

the same digest.

23

Message Authentication Code (MAC)

24

m

BobAlice

m’

Hacky McHackface

m
a = H(K, m)

BobAlice

m, a

Hacky McHackface

m

m, a

A.

B.

MAC Attacks

25

Replay Attacks

Mitigations (in message):

● Nonce (random number, never repeated)
● Timestamps
● Sequence Numbers

Length Extension Attack

m = m1 + m2 + … + mk

m’ = m1 + … + mk+ mk+1

h(m’) = h’(h(m), h(mk+1))

note: m’ needs to include padding
and length field

Length Extension Attack - PoC

26

Secret: my_secret_key (13 bytes total)

Data: ?action=VIEW_PLC_STATUS

Length Extension Attack PoC Cont’d

27

Length Extension Attack PoC (cont’d)

28

HMAC

● HMAC - RFC 2104
“Hash it again approach”

○ K = key, text = plaintext, H=hash function

This protects against length extension attacks, and key recovery attacks.

29

CMAC

30

RFC 4493

AES-GCM

● Authenticated encryption with associated data
(AEAD).

31

P

AD

AES-GCM
T

C

AD
AES-GCM

C

T

P

Encrypt Decrypt

Asymmetric Algorithms

32

● RSA, DSA, ECDSA
○ Asymmetric Encryption Algorithms

Key Exchange

33

● DH (Diffie-Hellman)
● DHE or ECDHE

○ Ephemeral
● Perfect Forward Secrecy (PFS / FS)

Use TLS!!!!

● TLS 1.3 is latest version. As of April 2024, 1.1 and 1.2 are deprecated.

● If using TLS 1.3, you can be sure that it won’t use any of the insecure mechanisms
listed on previous slides.

● TLS 1.3 uses a shorter handshake than previous TLS versions, making it faster than
previous versions.

● TLS 1.3 only uses ephemeral keys exchanged using Diffie Hellman. You can’t add a key
to Wireshark to decrypt this traffic, but there are other was to reverse engineer
protocols using TLS 1.3.

34

Case Studies - Reverse Engineering Tools

Tools:
- Wireshark
- Ghidra, IDA Pro
- dnSpy (for .NET applications)
- WinDBG

35

36

Identifying TLS - s7plus

https://blog.viettelcybersecurity.com/security-wall-of-s7commplus-part-1/

Siemens DIY Crypto

37

https://blog.viettelcybersecurity.com/security-wall-of-s7commplus-part-1/

Entropy Calculation

38

the average amount of information
contained in message

StartTLS

39

TLS Handshake (s7plus opportunistic / starttls TLS example)

40

Client Hello

Server Hello

Change Cipher Spec - 0x14 (for
backwards compatibility)

0x17 - TLS Application Data

TLS Headers

41

Type: 0x16
Version: 1.3
Length: 0x00ea (234)

s7plus TLS - v17 and up

42

Reverse Engineering Protocols With TLS 1.3 - s7plus

43

Reverse Engineering S7Plus

44

WinDBG Output

45

Beware Deprecated Algorithms

46

• NIST has deprecated DES and 3DES for all
applications.
• AES is a a good replacement

• SHA1 and MD5 are deprecated.
• Recommend SHA256/512 as replacement.

• RSA < 2048 bits.

Password Storage (Client Side)

47

Password Storage (Server Side)

48

● Don’t store passwords, store their salted and hashed digests (using a cryptographically
sounds RNG source, and FIPS compliant hash algorithm).
○ e.g. rnd_str + ‘$’ + SHA256(rnd_str+password)

● Better yet, use an algorithm designed for storing passwords that is FIPS compliant.
○ Argon2id
○ scrypt (a version of this called "yescrypt" is used in Ubuntu, see example below)
○ bycrypt

https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html

https://cheatsheetseries.owasp.org/cheatsheets/Password_Storage_Cheat_Sheet.html

Hardcoded Keys

49

Improper Password Authentication

50

Authentication Bypass

51

CHAP: https://www.ietf.org/rfc/rfc1994.txt

Server Client

Salted Hash PasswordSalt, Challenge Value

Encrypted Challenge
Value (using salted hash
as shared secret)

HTTP Digest Auth

Conclusion

● Use a popular, well supported cryptographic library in your projects rather than
coming up with your own cryptographic functions. If possible, leave it as a
shared library.

● For a complete solution for integrity, authentication, and confidentiality, use TLS
1.3. Use certificates for authentication rather than passwords.

● Don’t use deprecated cryptographic routines functions.
● Encoding / obfuscation is not crypto.
● Use HMAC rather than MAC for integrity checking. Implement per RFC or use a

library.
● Don’t assume hard coded encryption keys in hardware can’t be recovered. Even if

you blow the security fuses.
● Store passwords properly as salted hashes.
● Look for prior work, and RFCs if you need help with some in particular.
● Have a few experts review your cryptographic implementations.

52

Password Authentication Best Practices - End Users

● Ideally random user IDs to prevent attackers guessing.

● Use *different* authentication solution for remote access than what is used internally
(LDAP, AD, etc…). Ideally something hardened and designed to this purpose.

○ This solution use also utilize 2FA solution.

● Passwords should be at least 8 characters. OWASP recommends using a password
“strength” meter rather than complexity requirements which can actually result in more
predictable passwords.

○ https://github.com/zxcvbn-ts/zxcvbn

53

https://cheatsheetseries.owasp.org/cheatsheets/Authentication_Cheat_Sheet.html

